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Abstract-A one-dimensional model for multilayered (laminated) rubber bearings is deduced from
three-dimensional finite elasticity by means of the imposition of appropriate internal constraints
and a suitable choice of the constitutive equation. A closed-form solution is easily obtained in the
case ofsimple compression, so that a load-stretching relation can be established. Small deformations
superimposed on finite compression are also studied, and critical compressive loads, superimposed
small shear and superimposed small bending are discussed in detail. Finally, to illustrate the
significance of the results, some comparisons with previous analyses and experiments are examined.

1. INTRODUCTION

Rubber bearings are widely used in a variety of structural applications. Their use as bridge
bearings or as pads in building construction is traditional; moreover, again in the field of
civil engineering, they are being increasingly used for the so-called "base isolation", the
recent approach to the seismic structural design (see e.g. Kelly, 1991).

The analysis of such structural components is usually based on linear theories
(Topaloff, 1964; Courbon et aI., 1967), which are inadequate both in principle and in
comparison with the experimental results (see e.g. the remarks in the final section of Del
Piero and Podio-Guidugli, 1969). Recent research on the subject has been primarily limited
to either experimental analysis or finite element analysis, or else specific problems, such as
stability and reduction of shear stiffness under increasing axial loads (see, respectively,
Roeder and Stanton, 1983; Simo and Kelly, 1984; Stanton et al., 1990, where references
in the corresponding area can be found). Attempts to model rubber bearings within the
framework of non-linear elasticity were made by Del Piero and Podio-Guidugli (1969) and
De Tommasi and ~arzano (1988), who obtained explicit solutions of the equilibrium
problem for a single rubber layer in simple compression. Furthermore, by using their model
for the non-linear elastic deformations of rubber layers, Del Piero and Podio-Guidugli
(1970) obtained upper and lower bounds for the collapse load of reinforced bearings.

In this paper we present a one-dimensional model deduced from three-dimensional
finite elasticity, concentrating mainly on bearings for isolation base. A typical bearing for
such seismic protection is similar, as regards the form, to the traditional bridge bearing; it
consists of many thin layers of rubber bonded to horizontal steel plates by means of
vulcanization. Due to both the large number of plates and the great flexibility of rubber,
the resulting system has high stiffness with respect to vertical loads accompanied by low
shear stiffness.

Our present standpoint is different from the usual one. Rather than restricting attention
to a typical rubber layer between two successive steel plates, as was done by Del Piero and
Podio-Guidugli (1969) and De Tommasi and ~arzano (1988), we treat the bearing as
a whole, and consider appropriate kinematical assumptions we regard as constitutive
prescriptions restricting the class of all possible deformations, i.e. internal constraints.
According to the theory of constrained elastic materials, we split the stress tensor in two
parts. The one, reactive, is assumed to do no work in any deformation satisfying the
constraints; the other, active, is assumed to be both orthogonal to the reaction space and
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uniquely determined by the deformation. As an explicit example of constitutive function
for the active stress, we choose an appropriate form of the Blatz and Ko law for rubber­
like materials (Blatz and Ko, 1962). We discuss such a constitutive assumption in Section
2, where two classical homogeneous deformations are also examined.

To derive our one-dimensional model, we consider a special class of plane deformations
compatible with the assumed internal constraints; namely, those deformations which pre­
serve distance within each single cross section. Our investigation shows that equilibrium
deformations are governed by a boundary-value problem for a non-linear system of differ­
ential equations involving three unknown scalar functions of the axial coordinate (Section
3). By considering appropriate boundary conditions, we obtain a closed-form solution in
the case of simple compression. As a consequence, we find an exact relation between the
stretching parameter and the compressive force, i.e. the load-stretching relation. Closed­
form solutions are not in sight for other types of loadings. Our work on numerical solutions
has not been completed yet; we plan to present it in a future paper.

Here we turn to the study of small deformations superimposed on finite compression,
using a standard linearization procedure (Section 4). We indicate how to obtain critical
loads in simple compression, and, with reference to the lowest critical load, we examine the
dependence on geometrical parameters (Subsection 4.1). For superimposed deformations,
being either small shear (Subsection 4.2) or small bending (Subsection 4.3), we also perform
the explicit calculation of the corresponding stiffness. Interestingly, for shear, our results
predict that the transverse stiffness is specified by a decreasing function of the compressive
force, just as several experimental results and semi-empirical formulae deduce. Conversely,
the bending stiffness increases with increasing compressive load (until its maximum value),
and this theoretical result is also confirmed by experiments.

Finally, specific applications of our work in modelling the behavior of multilayered
rubber bearings are illustrated in Section 5. Here, we discuss the significance of our results
by means of a detailed comparison with previous analysis and experiments.

2. CONSTITUTIVE ASSUMPTIONS

As a first step, we now introduce the constitutive class on which our approach is based.
Let {O; elo e2, e3} be a Cartesian coordinate frame, and let (X lo X 2 , X 3) be the

coordinates of a point X. Let us consider the parallelepiped f!l with edge lengths 2A, 2B, L
having the basis .91:= ]-A, A[x]-B, B[ in the plane X 3 = 0 (Fig. 1). As alluded to in
the Introduction, we treat the bearing as an internally constrained elastic block, identified
with the region fJB = .91 x ]0, L[ it occupies in an undistorted reference configuration. We
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suppose that the steel reinforcing layers are parallel to the (Xl> X 2) plane, and we call
d(X3) the typical cross section of fJI.

A deformation of fJI is a smooth mapping f: fJI:3 X~ X = f(X) E IR 3 with det F > 0,
where

F = vr (1)

is the deformation gradient.
We impose the following internal constraints:

(h I) orthogonality preserving with respect to direction pair (e2' e3);
(h 2) inextensibility in the directions e I, e2, and orthogonality preserving with respect to the
direction pair (e 1, e2).

Thus, for each X E fJI, the set of all admissible deformation gradients F from the reference
placement is a constraint manifold described by the restrictions:

(2)

(8ij is the Kronecker delta).
Notice that the second part of (2) implies inextensibility in all directions coplanar with

the two directions ej, e2, that is a local (in-plane) rigidity, an assumption justified by the
very large number of the steel plates vulcanized inside the rubber matrix. The imposition
of (h 1), which is described by (2) part I, is motivated by our procedure of constructing the
one-dimensional model from the three-dimensional theory.

According to the theory of constrained elastic materials,* we now lay down a consti­
tutive prescription for the Cauchy stress tensor T as follows. We split T into an active part
T A and a reactive part T R

:

(3)

Further, we stipulate that the reactive stress TR does no work for any deformation satisfying
the assumed constraints (2). As an immediate consequence, we have that T R can be expressed
in the form

where Pi (i = I, ... , 4) denote arbitrary scalars, and

(5)

are three mutually orthogonal unit vectors (for any admissible F).
Finally, the active stresses T A are assumed to be orthogonal to the reactive stresses T R•

Under the imposed constraints, this is equivalent to requiring that the active response
funetion be a mapping F~ TA fA(F) of the form:

(6)

where aj, a3 are given by (5), and where a\> &2 are scalar functions (with obvious domain).
It is important to note that the freedom in the choice of such O:j, 0: 2 is reduced by the
requirement that the mapping fA isframe-indifferent. Indeed, it is not difficult to show that
frame-indifference corresponds to the requirement that:

*We follow the theory ofconstrained materials in the form proposed by Gurtin and Podio-Guidugli (\973).
We also refer the reader to the recent article by Podio-Guidugli (1990).
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ai(RF) = &;(F) (i = 1,2), (7)

for every proper orthogonal tensor R and every admissible deformation gradient F.
In later calculations we shall use the following explicit expressions for the response

functions &], &2:

a] (F) = ,u[det F - (det F) - (u+ I)] + ).(det FHIFe312 - I),

a2(F) = [,u+),(IFe312_l)](Fel' Fe3)'

where ,u, A. and (J are material moduli satisfying the inequalities

,u > ), > 0, (J > O.

(8)

(9)

Clearly, constitutive prescriptions (8) agree with the frame-indifference requirement (7).

Remark 1. For &] and &2 chosen as in (8), (6) specifies the active stress for hyperelastic
materials, constrained so as requested by (2) and having the following stored energy density
fJ:

a: FH fJ(F):= 1,u [IIFI1 2- 3+ ~ «detF)-U -I)] + ~ (IFe312-1)2. (10)

Indeed, by considering the orthogonal projection of the values of the mapping

(11)

on the active stress space, we find (6) and (8). As remarked by Vianello (1990), DB in the
last formula denotes the surface gradient of fJ on the constraint manifold.

Remark 2. For A. = 0, the mapping (10) reduces to the stored energy density considered by
Blatz and Ko (1962) to model the mechanical behavior of rubbers. However, the addition
of the term ),(IFe312-1)2j4 is important to avoid the unreal behavior of Blatz and Ko
material, which tends to "soften" in tension (see Burgess and Levinson, 1972).

We now discuss the behavior of the above constitutive relations limiting attention to
two classical homogeneous deformations; we shall use components where convenient.

(a) Extension. Consider an extension of amount k (with k > 0) in the direction e3, so
that

Ifwe assume

Pi = 0 (i = 1, ... ,4)

(12)

(13)

for the parameters which determine the reaction stress T R [see eqn (4)], we obtain by (3),
(6) and (8) that the corresponding stress T is a pure tension in the direction e3:

(14)

with

(15)

It is worth noting that, under inequalities (9), the normal stress T33 is a strictly increasing
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Fig. 2. The normal stress T 33//l as a function ofk (IT = 20, Ajp. = 0.8).
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function of k (Fig. 2). In particular, T33 - 00 as k - 0, and T33 - 00 as k - 00; in other
words, the stress tends to =+ 00 as the length of the specimen tends to zero or infinity,
respectively. Figure 2 and the following are obtained for (f = 20 and Alp, = 0.8, a suitable
choice for laminated elastomeric bearings.

(b) Simple shear. Let

(16)

be a simple shear, with axis el and shearing strain y. Again in view of (3), (4), (6) and (8),
a simple calculation shows that the components T 13 = Te3 °el and T33 = Te3 °e3 have the
form

(17)

Thus, both the shear stress T 13 and the normal stress T33 are uniquely determined by the
deformation. Tl3 is an odd function of the shear strain y; moreover, for T33 to vanish A
would have to be zero. Constitutive restrictions (9) imply that the generalizedshear modulus
Tl3ly is increasing with y.

3. DERIVAnON OF THE MODEL

In this section we derive a one-dimensional equilibrium problem for our elastic solid
fJI. We begin by imposing the momentum balance laws for any part of fJI which is bounded
by two planes orthogonal to direction e3 , namely, for parts 9 having the form:

(18)

where d h d 2 (with d l < d 2) can be arbitrarily chosen in [0, L]. Then, in absence of body
force, the balance equations take the form

r SodA = 0,J09

r (x-O) x So dA = 0 for any 9,J09 (19)

where 0 is the outward unit normal field on at?', and S denotes the Piola-Kirchhoff stress

$AS 3l:15·H
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field depending on the Cauchy stress T and the deformation gradient F by means of the
well known relation

(20)

We define the force R(X3) and the moment M(X3) (about 0) on d(X3) by

By (19), using standard arguments, we arrive at the differential equations

dR dM
dX

3
+r = 0, dX

3
+m 0 in ]0,£[,

where

(21)

(22)

r(X3):= r Sods and m(X3):= r (x-O)xSnds (23)
Jad(X,) Ja.<1(x ,)

are, respectively, the force and moment of the traction on the boundary of d(X)).
If, as we assume here, the lateral surface of (!4 is traction-free, then S must satisfy the

boundary condition

So = 0 on ad x ]0, L[.

So that, by (23),

r = 0, m = 0 in ]0, L[,

and the equilibrium equations (22) can be written as

O dM .]
, dX; = 0 10 0,£[.

(24)

(25)

(26)

To derive our one-dimensional model, we study a special class of plane deformations
compatible with the assumed internal constraints (2). Precisely, we consider deformations
of the form:

{
::: ~:')+x,CO" (X,)

X3 = h(X3)+X j SlUV(X3) ,

(27)

where (Xl> X2, X3) denote the coordinates of the point x = f(X), and g, h, v are arbitrary
functions. The corresponding deformation gradient has the form :

[

COSV 0

[F]= 0 1

sin v 0

(28)

(the prime denotes differentiation with respect to X 3), so that, as is immediately seen, each
of the imposed constraints (2) is satisfied.
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Thus, for the above equilibrium problem, we now make explicit the selected class of
deformations and constitutive prescriptions. We begin by observing that, by (3) and (20),
the Piola-Kirchhoff stress S can be decomposed in a reactive part SR and an active part
SA:

(29)

with SR ,= (det F)TRF-T and SA ,= (det F)TAF-T• Thus, when F is chosen as in (28), T R

as in (4) and TAas in (6), we obtain

[

JpICOSV

[SR] = Jp3-(h'sinv~g'cosv)p4

Jplsmv

-(h' sin v+g' cos v)(&j(F) sin v

+&2(F) cos v) -J&2(F) sin v

o
- (h' sin v+g' cos v)(& I(F) cos v

+ ~2(F) sin v)+J&2(F) cos v

where we have set

J(P3COS V-P4 sin v) 0]
Jp2 P4 ,

J(P3sinv+p4cosv) 0

o 0

o &,(F) cos v+&2(F) sin v

, (30)

J ,= det F = h' cos v-g' sin v+ XI v',

and where, in view of (8),

(31)

~I(F) = /l(J-J-(u+ l)+AJrg'2+h,2 -1 +X~v'2+2XIV'(h'cos v-g' sin v)],

~2(F) = (g' cos v+h' sin v) {/l+ A.[q'2 +h,2 -1 + X~V'2 + 2X1v'(h' cos v-g' sin v)]).

(32)

Throughout, because of the symmetry of the problem with respect to the plane X 2 = 0,
we assume for the reaction fields Pi:

Pi(X], X 2, X 3) = Pi(X], - X 2, X 3), i = 1,2,

Pi(X lo X 2, X 3) = - Pi(X lo - X 2, X 3), i = 3,4. (33)

So, expressions for the force R and moment M on the typical section d(X3) follow from
definitions (21) with the use of (27), (29), (30) and (32). They are:

(34)

where
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M(X3) = ( [a2(F)(hcosv-gsinv)-ai(F)(hsinv+gcosv+Xd] dA
J",(x))

Similar calculations for the force r and the moment m defined by (23) yield

r(X3) = {cos vII -sin vI2+2B[S1d;::~A}e1+ {sin vI, +cosvI2+2B[Std;::~A}e3'

m(X3) = {(hcosv-gsinv)It-(hsinv+gcosv)I2-I3

+ 2B[S1, (h+ X, sin v) - st, (g+ XI cos v)];: :~A }e 2 , (36)

where we have set

11 := f:B [JpI];::~A dX2+2 fA (Jp3)lx2~B dXh

12:=2 fA (Jp4)lx2~BdXl' 13:=2 f:A X,(Jp4)lx2~BdXl' (37)

Equations (34) and (35) make evident the "active nature" of Rand M which are
uniquely determined by the deformation f. Conversely, as shown by (36) and (37), rand m
are determined by f only to within the arbitrary reactive fields Ph P3, P4' It is not difficult
to show that the boundary conditions (25) are always satisfied when rand m are given by
(36) and (37). Indeed, by virtue of the arbitrariness of P], P3, P4, it is easily seen thatI, (X3),
I2(X3) and I3(X3) can assume any set of values for each X 3E ]0, L[. In particular, we can
choose II (X3), I2(X3) and I3(X3) such that all components ofr(X3) and m(X3) vanish for
every X 3 E]O, L[.

Combining (26) and (34), the equilibrium equations can be written in scalar form as:

dN dT dM

dX3
= 0, dX = 0, -~ = ° in ]O,L[.

1 dX3

(38)

In conclusion, the equilibrium problem can be stated as follows: for f given by (27), find
the functions g, h and v which satisfy (38), (35). Of course, boundary conditions which
prescribe the deformation or the total traction on the end faces X 3 =°and Xl = L must
be added to the system of ordinary differential equations (38).

4. SMALL DEFORMAnONS SUPERIMPOSED ON FINITE COMPRESSION

Firstly, we consider a finite compression. Let kL, with °< k < 1, be the length of f!J
after deformation. If we assume the boundary conditions



then it is easily seen that

Model for finite deformations

h(O) = 0, g(O) = 0, v(O) = 0,

h(L) = kL, g(L) = 0, v(L) = 0,

2129

(39)

(40)

is a solution of the boundary value problem defined by (35), (38) and (39). In other words,
we have an extension of amount k in the direction e3. Moreover, again by (35), a trivial
computation shows that T = 0, M = 0, and

(41)

with T33 given by (15). Thus, Nis independent of X 3, and the function kt-+No(k) defined
by (41) and (15) can be interpreted as the relation between the stretching parameter k and
the normal force No acting on the basis. To within the area of the basis, such a relation is
shown in Fig. 2.

As there is little hope of solving the non-linear differential system (35), (38) in closed­
form when the boundary conditions differ from (39), we confine our attention to small
deformations superimposed on the finite compression defined by (40). More precisely, we
now set formally

{

9(X3) = f,§(X3)

h(X3) = k:3+f,/i(X3),

v(X3) = f,v(X3)

(42)

where f, denotes a smallness parameter. Then, to within terms of order O(f,Z) as f, -+ 0, eqns
(35) yield

N(X3) = N o(k)+w(k)/i'(X3),

T(X3) = f,b(k)§'(X3) +f,c(k)v(X3),

AZ

M(X3) = kX3T(X3) -f,No(k)§(X3) -f,3a(k)v'(X3),

where

N (k) A.
_0_ = k-k-(a+ I) + _(k 3-k)
4ABJi Ji'

and

a(k) A.
--= 1+(a+l)k-(a+Z)+-(3kz-l)
4ABJi Ji'

b(k) A. Z

4ABJi = 1+ ~ (k - 1),

c(k) = k-(a+ I)

4ABJi .

A simple computation shows that the inequalities (9) imply

(43)

(44)

(45)
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No(k) < 0 and a(k) > 0, b(k) > 0, c(k) > 0 (46)

for every k E ]0, 1[.
For the remainder of this section, we write g, ii, v in place of eg, eli, eli, respectively.

Substitution of (43) into (38) yields

{

a(k)ii" = 0

b(k)9" +c(k)v' = 0 in ]0, L[,

AZ

k[b(k)g' +c(k) V] -No(k)g' - 3a(k)v" = 0

a linear differential system whose solution, for 0 < k < I, has the form:

(47)

ii(X3) = C 1X 3 +CZ,

g(X3) = C 3 sin (d(k)X3) +C4 cos (d(k)X3) +C SkX3 +C6 ,

_ b(k)d(k) .
v(X3) = - c(k) [C 3 cos (d(k)X3)-C4 sm (d(k)X3)]-C S' (48)

where C" ... , C6 are arbitrary constants, and the function ]0, I [3 k H d(k) is defined by

I
d(k):= ­

A

-3No(k)c(k)

a(k)b(k)
(49)

Notice that, in view of (44) and (45), k H d(k) is continuous and strictly decreasing in ]0, 1[;
further, d -+ + 00 as k -+ 0, and d -+ 0 as k -+ I.

4.1. Critical loads in simple compression
Consider the boundary-value problem obtained by adjoining to (47) the following

homogeneous boundary conditions:

ii(o) = ii(L) = 0, g(O) = g(L) = 0, v(O) = v(L) = O. (50)

Our next step will be to find the critical values of the stretching parameter k, i.e. the values
of k for which the above boundary-value problem admits non-trivial solutions. We do this
by combining (48) and (50). Then, for the resulting linear system in the unknown
(C" ... , C6), the coefficients matrix assumes the form

I

o I: 0
L I I

- - - ~I- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

I 0 I 0 I
I

I sin (d(k)L) cos (d(k)L) kL I

: b(k)d(k) (51)o 0 - I 0
: c(k)

: _ b(k)d(k) (d(k)L) b(k )d(k) . (d(k)L) _ I 0
I c(k) cos c(k) sm
I

For the system to have a non-trivial solution, we must require the vanishing of the deter­
minant of (51). As a simple calculation shows, such a requirement is expressed by the
equation
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b(k)d(k) . 2 d(k)L (2- b(k)d(k) kL t d(k)L) =°
c(k) sm 2 c(k) co 2 '
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(52)

with k E ]0, I [. Therefore, the roots of equation (52) which belong to ]0, I[ are the desired
values of k. Clearly, compressive critical loads can be obtained by evaluating the expression
(44) at such values of k.

To evaluate the greatest critical value of k we observe that, in view of (46) and (49),
(52) is equivalent to either

d(k)L = 2nn (n integer)

or

b(k)k d(k )L cot d(k )L = I.
c(k) 2 2

Let k1r denote the critical value given by (53a) with n = I, so that

d(k1r)L = 2n.

(53a)

(53b)

(54)

Our next step will be to show that k1r is just the greatest critical value. Clearly, since the
function k~ d(k) is strictly decreasing in ]0, 1[, k1r is the greatest critical value satisfying
(53a). Thus, we have only to show that there is no value of kE]k1" I[ satisfying (53b).
Indeed, by (45),

b(k)k I
c(k) <

for every kE]O, 1[, so that (53b) implies

d(k)L d(k)L
-2-cot-2~>1.

(55)

(56)

But, as is easy to see, this inequality cannot hold ifk E ]k1" I [, since properties of the function
d in conjunction with (54) require that (d(k)Lj2) E]O, n[ when kE]k1" 1[. We therefore
conclude that k1r is the desired critical value. Of course, the corresponding critical load
N o(k1r) is the lowest critical load in absolute value, since the function k~ No(k) defined by
(44) is negative and strictly increasing in ]0, 1[.

In our structural applications, we call the ratio LjA the slenderness of the bearing.
Clearly, k1r depends on the slenderness. Specifically, in view of (49), (54) defines the function

(57)

which is increasing in ]0, +00 [ since d is decreasing. Similar arguments show that INo(k1r) I,
the absolute value of the smallest critical load, is a decreasing function of LjA [see curve
(a) in Fig. 3, where we use the dimensionless parameter \Nolj4ABJl in place of INol].

4.2. Superimposed small shear
Here the boundary conditions take the form

g(O) = 0, h(O) = 0, v(O) =° and g(L) = s, h(L) = 0, v(L) = 0, (58)

with s a small parameter. In other words, from the state of finite compression, the bases
are constrained to undergo a rigid relative displacement of amount s in the direction of X,­
axis. Substitution of (48) into (58) leads to a non-homogeneous system of linear equation
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Fig. 3. Critical load INol/4ABjl as a function of LIA. (a) Simple compression; (b) superimposed
small shear; (c) superimposed small bending ((1 = 20, Alp. = 0.8).

in the unknowns (C l , ... , C 6) whose coefficients matrix is again (51). Thus, the boundary­
value problem defined by (47) and (58) has a unique solution when (51) is non-singular;
so it is, in particular, for every k E ]kd" 1[, with kdr defined by (54).

A routine calculation yields

C 1 = C 2 = 0,

C 3 = -Q,

d(k)L
C 4 = -C6 = tan-

2
- Q,

b(k)d(k)
Cs = c(k) Q, (59)

where we have set

s
Q = k b(k)d(k) d(k)L'

L c(k) -2 tan -2-

(60)

Finally, (43) gives the following expression for the shear force T:

No(k)
T = c(k) d(k)L s.

kL-2 b(k)d(k) tan -2-

(61)

In order to apply our results to cases of technical interest, we introduce the (dimen­
sionless) transverse stiffness KT of (]I

T (S)-1
KT := 4ABp. L (62)

The comparison of (62) with (61) shows that the stiffness KT depends on the normal load
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Fig. 4. Transverse stiffness KT as a function of IN ol/4ABJl (LIA = 0.5,1,2; (1 = 20, AIJl = 0.8).
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No. In particular, for a number of fixed values of L/A, Fig. 4 illustrates the behavior of KT

in terms of the dimensionless average pressure INol/4ABIl. Interestingly, KT is a decreasing
function of INol; it means that, under shear force, the compressed block is easier to deform
for increasing normal force INol. Further, by (61) and (62) we see that KT vanishes at the
value, ker say, such that

(63)

We call No(ker) the critical load for small shear deformations superimposed on finite
compression. The curve (b) in Fig. 3 illustrates the dependence of such a critical load on
the slenderness L/A.

4.3. Superimposed small bending
In this case the boundary conditions have the form

g(O) = 0, h(O) = 0, v(O) = ° and g(L) = 0, h(L) = 0, v(L) = - ¢; (64)

that is, the basis X 3 =°is fixed and the other basis undergoes a rotation of amount ¢ about
the Xraxis. The consequent boundary-value problem (47), (64) can be solved in a way
similar to that considered in the previous subsection. In particular, we obtain

d(k)L '
2V- V2kLcot-

2
-

C
4

= -C
6

= VkL-sin (d(k)L)

. d(k)L ( d(k )L) ¢,
2Vsm 2

-
2
- 2- VkLcot-

2
-

where we have set

¢
C s = d(k)L '

2-VkLcot-­
2

(65)



2134 S. MARZANO

v = b(k)d(k)
-c(-k-)-' (66)

We conclude by recording a significant formula which we derive from the scrutiny of
the current problem. If we call

m:=a 2 ·1 (x-f(0,0,L»xSe3 dA
.<f(L)

(67)

the bending moment acting on the end face deL), we have from (27), (21) and (34) that

m = M(L)-h(L)T(L)+g(L)N(L). (68)

Thus, the following expression for m

m = A
2
a(k)d(k) sin (d(k)L)- Vklcos (d(k)L)

6 . 2 d(k)L ( d(k)L) </J
sm --2- 2 - VkL cot -2-

(69)

follows from (43), (48), (65) and (66). In Fig. 5, for a number of fixed values of L/A, we
plot the dimensionless bending stiffness KM of!JB, defined by

m I
KM := A 2 BIl 4> ' (70)

against the average pressure INol/4ABIl. It is worth noting that, for values of L/A chosen
as in the present case, the bending stiffness KM goes through a maximum as the normal load
[Nol is increased. Further, by (69) and (66) it is easily seen that KM vanishes when the
numerator in (69) is zero. Let k er denote the unique value of k in ]k1" I [, with k1, defined
by (54), for which this condition is verified. Then, curve (c) in Fig. 3 illustrates the relation
between the corresponding critical load No(ker) and the slenderness L/A.

5. COMPARISON WITH PREVIOUS ANALYSIS AND EXPERIMENTS

Our theoretical investigation has specific applications in predicting the mechanical
behavior of multilayered bearings. In order to illustrate this point, we now comment on the

700r­
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1 I
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300

J!::!2L 40

4AB/L

Fig. 5. Bending stiffness KM as a function of INol/4ABJi (LIA = 0.5, I, 1.25,2; (J = 20, AI/l = 0.8).
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significance of our results by discussing some comparisons with previous analysis and
experiments.

We begin our discussion, which will be limited to the stability, with a remark on our
reasons for studying the small deformations superimposed on a finite compression (Section
4). Such a study has first of all primary interest as a model of the mechanical behavior of
solids and structures; secondly, it allows one to formulate the stability, namely, as observed
by Truesdell and Toupin (1960), as an application of the theory of finite deformation.
Thirdly, as we will see to be confirmed by experiments, superimposed deformations seem
appropriate to capture some significant non-linear effects in the structural response of
rubber bearings. We also notice that the stability analysis has a fundamental role in the
design of reinforced e1astomeric bearings. However, the specifications of usual codes, which
limit the slenderness of the bearing to prevent buckling phenomena, are generally very
conservative; so, bearings are used which are stiffer than necessary with respect to horizontal
displacements.

Past theoretical work on the stability of multilayered rubber bearings is essentially
based on linear approaches. Here we will consider two of such approaches, both including
shear flexibility; precisely, the so-called Haringx's theory and its subsequent modification
proposed by Gent.

For convenience of the reader, we next recall the main results of such theories; greater
details can be found in Buckle and Kelly (1986) and Stanton et al. (1990). Consider an
axially loaded bearing that is fixed against the rotation at both ends. Let T and s denote
the shear force and the relative displacement of the bases, respectively. Thus, the transverse
stiffness T/s of the bearing is given by the formula:

Po
-

T L

s 1+Po/:f(, qL
, (71)

2 tan--l
qL 2

where

2 Po ( Po) (72)q = oX'; l+:f(, ,

and where Po is the compressive axial load, L is the height of the bearing, oX'; and :f(, are
the flexural and shear stiffnesses, respectively. Again in the context of the above-mentioned
models, the lowest critical value Pcr of the axial load is expressed by

:f(,[Pcr =2 -1+ (73)

when the bases of the bearing are assumed both fixed.
As regards oX'; and :f(" Haringx's model adopts the corresponding expressions which

hold in the engineering beam theory. So that, for a bearing whose cross section is a square
with edge length 2A, we have

1 4 2
oX'; = 12 (2A) E, :f(, = 4A G, (74)

if the rubber has Young's modulus E and shear modulus G. On the contrary, in Gent's
approach oX'; and :f(, are derived from the properties of a typical rubber layer, and then
adjusted to account for the presence of the steel layers. In this case, for the same bearing
considered in (74), one has
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L 1 4 L 2
~ = L J..T2(2A) E, ~ = L 4A G,

r r
(75)

where Lr is the total thickness of rubber, and J.. is a numerical coefficient depending on the
shape factor of the typical rubber layer. If tr denotes the thickness of the typical rubber
layer, then J.. is given by

(
A)2J.. = 1+0.1855 t, . (76)

As noted by Stanton et al. (1990), Gent also performed experiments on rubber bearings.
Only for very slender bearings did he find a reasonable agreement with the predictions of
his theoretical model. Indeed, for bearings with practical dimensions, the agreement was
neither clear nor remarkable. Finally, the experiments performed by Buckle and Kelly
(1986) on seismic isolation bearings showed the validity of the improvement proposed by
Gent to Haringx's model.

We now compare the results just quoted with our results on the lowest critical load in
simple compression (Subsection 4.1) and the transverse stiffness (Subsection 4.2). Clearly,
to unify the different notations, we have to set the obvious identifications:

Po = -No and Per = -No(kJr); (77)

here, Po and Per are the notation used in (71), (72) and (73), while our No and No(kJr) are
defined by (41) and (44), (54), respectively. Further, in view of (74), (75), (8) and (17), we
assume the following relations for the material moduli:

(78)

Finally, as regards the geometrical characteristics of the rubber layers, we consider the
practical situation (Buckle and Kelly, 1986) defined by the conditions:

A L r- = 15.1, - = 0.75.
tr L

(79)

Figure 6 shows the relation between the dimensionless buckling load INo(kJr)I/4A2/l
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Fig. 6. Buckling load INo(k~r)I/4A2J1 as a function of slenderness L/A, in Haringx's theory, Gent's
modification and our model.
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and the slenderness L/A, as predicted by Haringx's theory [eqns (73), (74)], Gent's modi­
fication [eqns (73), (75)] and our model [eqns (44), (54)]. Figure 7 illustrates an analogous
comparison for the transverse stiffness as a function of the axial load INol/4A 2,u; Haringx's
curve is deduced from (71), (72) and (74), Gent's curve from (71), (72) and (75), and our
curve is derived from eqn (61). All curves in Fig. 7 are obtained by assuming L/A = 1.

To analyze the predictions shown in the above figures, the interesting discussion of
Stanton et al. (1990) may be useful. Indeed, these researchers discussed the experiments
conducted on columns made from steel-reinforced bearings to determine the buckling load
and the transverse stiffness. First of all, we remark that Gent's theory improves Haringx's,
and this experimental fact is clearly confirmed by the predictions described in both Figs 6
and 7, where Gent's curves are near enough to our curves. Further, as already said, Gent's
model gives good predictions for the buckling load of multilayered bearings that are very
slender (hence, at very low stresses), even if it slightly overpredicts the experimental values.
For bearings of practical dimensions (i.e. for stock slendernesses), Gent's model con­
siderably underpredicts the experimental buckling loads. Because of such a deficiency, as
noted by Stanton et al. (1990), the model proposed by Gent must be modified to account
for changes in geometry, which are significant at high levels of stress. All of the above
observations are quite in agreement with the predictions illustrated by our curve, as can be
seen in Fig. 6.

Tests were also performed on compressed bearings to measure the transverse stiffness
under varying amounts of axial load (Stanton et al., 1990). In these tests, the transverse
stiffness was taken as the tangent stiffness at zero displacement, as in our corresponding
analysis of small shear superimposed on finite compression. The results of all tests indicate
that the transverse stiffness decreases with increasing axial load, and this agrees with the
predictions shown in Fig. 7. However, the reduction in transverse stiffness shown by
experiments was greater than Gent's predictions (compare with our curve). Moreover, if
changes in geometry are taken into account, a curve is deduced by experimental results
(Stanton et al., 1990, p. 1361, Fig. 4b), which seems to be in remarkable agreement with
our curve in Fig. 7.
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